
International Journal of Cooperative Information Systems
fc World Scienti�c Publishing Company

THE ARIADNE APPROACH TO

WEB-BASED INFORMATION INTEGRATION�

CRAIG A. KNOBLOCK, STEVEN MINTON, JOSE LUIS AMBITE,

NAVEEN ASHISH, ION MUSLEA, ANDREW G. PHILPOT, and SHEILA TEJADA

Information Sciences Institute, Integrated Media Systems Center,

and Department of Computer Science

University of Southern California

4676 Admiralty Way,

Marina del Rey, CA 90292

Received (to be inserted

Revised by Publisher)

The Web is based on a browsing paradigm that makes it diÆcult to retrieve and inte-

grate data from multiple sites. Today, the only way to do this is to build specialized

applications, which are time-consuming to develop and diÆcult to maintain. We have

addressed this problem by creating the technology and tools for rapidly constructing in-

formation agents that extract, query, and integrate data from web sources. Our approach

is based on a uniform representation that makes it simple and eÆcient to integrate mul-

tiple sources. Instead of building specialized algorithms for handling web sources, we

have developed methods for mapping web sources into this uniform representation. This

approach builds on work from knowledge representation, databases, machine learning

and automated planning. The resulting system, called Ariadne, makes it fast and easy

to build new information agents that access existing web sources. Ariadne also makes it

easy to maintain these agents and incorporate new sources as they become available.

Keywords: Information integration, information agents, web sources, knowledge repre-

sentation, machine learning, automated planning, wrappers

1. Introduction

The amount of data accessible via the Web and intranets is staggeringly large and

growing rapidly. However, the Web's browsing paradigm does not support many

information management tasks. For instance, the only way to integrate data from

multiple sites is to build specialized applications by hand. These applications are

time-consuming and costly to build, and diÆcult to maintain.

This paper describes Ariadne,a a system for extracting and integrating data

from semi-structured web sources. Ariadne enables users to rapidly create informa-

tion agents for the Web. Using Ariadne's modeling tools, an application developer

�This article is an extended version of the article originally published in AAAI'98 [20]
aIn Greek mythology, Ariadne gave Theseus the thread that let him �nd his way out of the

Minotaur's labyrinth.

1

2 The ariadne Approach to Web-based Information Integration

starts with a set of web sources { semi-structured HTML pages, which may be lo-

cated at multiple web sites { and creates a uni�ed view of these sources. Once the

modeling process is complete, an end user (who might be the application developer

himself) can issue database-like queries as if the information were stored in a single

large database. Ariadne's query planner decomposes these queries into a series of

simpler queries, each of which can be answered using a single HTML page, and then

combines the responses to create an answer to the original query.

The modeling process enables users to integrate information from multiple web

sites by providing a clean, well-understood representational foundation. Treating

each web page as a relational information source { as if each web page was a lit-

tle database { gives us a simple, uniform representation that facilitates the data

integration. The representation is quite restricted, but we compensate for that by

developing intelligent modeling tools that help application developers map complex

web sources into this representation.

Figure 1: A CIA Factbook Page

We will illustrate Ariadne by considering an example application that involves

answering queries about the world's countries. An excellent source of data is the

CIA World Factbook, which has an HTML page for each country describing that

country's geography, economy, government, etc. The top of the Factbook page for

the Netherlands is shown in Figure 1.b Some of the many other relevant sites include

the NATO site, which lists the NATO member countries (shown in Figure 2), and

the World Governments site, which lists the head of state and other government

oÆcers for each country (shown in Figure 3). Consider queries such as \What NATO

bAll the web sources in our examples are based on real sources that Ariadne handles, but we have

simpli�ed some of them here for expository purposes.

International Journal of Cooperative Information Systems 3

countries have populations less than 10 million?" and \List the heads of state of

all the countries in the Middle East". Since these queries span multiple countries

and require combining information from multiple sources, answering them by hand

is time consuming. Ariadne allows us to rapidly put together a new application

that can answer a wide range of queries by extracting and integrating data from

prespeci�ed web sources.

Figure 2: NATO Members Page

In the following section we describe our basic approach to query planning, where

a unifying domain model is used to tie together multiple information sources. We

then describe the details of our modeling approach: how we represent and query

individual web pages, how we represent the relationships among multiple pages in

a single site, how we integrate data that spans multiple sites, and how we represent

and materialize data locally to optimize an application. In each section, we also

describe the methods that are used in modeling and query processing, and how the

uniform representational scheme supports these methods.

2. Approach to Information Integration

The Ariadne integration framework consists of the following components:

� A model of the application domain,

� A description of the information sources in terms of this model,

� Wrappers that provide uniform access to the information sources so that they

can be queried as if they were relational databases, and

� A query planner that dynamically determines how to eÆciently process a user

query given the set of available information sources.

4 The ariadne Approach to Web-based Information Integration

Figure 3: World Governments Page

As we describe in this paper, these components provide the infrastructure to build

a complete web-based information integration system. For example, navigating

through a web site is simply a matter of creating wrappers for the navigation pages,

representing these pages, and letting the query planner generate the appropriate

navigation plans. Similarly, resolving naming inconsistencies across sites is ad-

dressed by building a new information source that provides the mapping, modeling

this information source, and using the query planning to generate plans that use

these mappings when needed. Finally, locally storing data to optimize plans can be

done simply by creating a new information source with the cached data, modeling

this source, and relying on the query planning to use this cached information when

needed.

In this section we provide an overview of Ariadne's integration model and how it

facilitates eÆcient query planning. In later sections we will show how this uniform

model supports the requirements of a complete information integration system for

the web.

Ariadne's approach to information integration is an extension of the SIMS me-

diator architecture [5, 6, 19]. SIMS was designed for structured information sources

such as databases and knowledge bases (and to some extent output from programs).

In Ariadne, we extend the SIMS approach to semi-structured sources such as web

sources by using wrappers. Also, database applications typically involve only a

small number of databases, while web applications can involve accessing many more

sources. Since the SIMS planner did not scale well to large numbers of sources, for

Ariadne we developed an approach capable of eÆciently constructing large query

plans by precompiling part of the integration model and using a local search method

International Journal of Cooperative Information Systems 5

for query planning [4].

2.1. Integration Model

In SIMS and Ariadne the mediator designer de�nes a domain model, which is an

ontology of the application domain that integrates the information in the sources

and provides a single terminology over which the user poses queries. The domain

model is represented using the Loom knowledge representation system [24]. Each

information source is de�ned to be equivalent to a class description in the domain

model. Thus, Ariadne uses a form of local-as-view source descriptions, cf. [28].

This approach facilitates the addition of new sources to the mediator, since the new

source de�nitions do not interact with the previous ones.

As an example of a domain model consider Figure 4. For simplicity of exposition,

this model assumes that the information in the three web sites described earlier, the

CIA World Factbook, the World Governments site, and the NATO members page,

is available in three separate databases, along with a fourth database containing a

map for each country (later we show the modeling when the information is avail-

able from web sources, see Figure 11). The model contains four classes with some

relations between them. For example, `NATO Country' is a subclass of `Country',

and `Country' has a relation called `Head-of-State' which points to a class with the

same name. Each domain class has a set of attributes. For example, some of the

attributes of the `Country' class are total area, latitude, population, etc. We use

the domain model to describe the contents of each information source. For example,

the �gure shows that the CIA Factbook is a source for information about Countries,

and the World Governments database is a source for Heads of State. A source may

provide only a subset of the attributes for a given domain class, so the system may

need to combine several sources to obtain all the desired attributes. For example,

if the user requests the total area and a map of a country, the system must retrieve

the total area from the CIA World Fact Book and the map from the Map database.

2.2. Query Processing

Queries are presented to the system in terms of the domain model. For example,

a query might be \List the heads of state of all the countries whose population is

less than ten million."c The system then decomposes the query into subqueries

on the individual sources, such as the World Governments and Factbook sources,

producing a query plan consisting of relational operators (i.e., joins, selects, projects,

etc.) and access operations to the sources.

To improve the eÆciency of query planning, we used two techniques. First,

the source descriptions are compiled o�-line into a more convenient form. Second,

we implemented a transformational query planner that explores the space of query

evaluation plans using local search.

cWe use English translations of the queries for clarity. In the system the queries can be expressed

using either SQL or the Loom query language.

6 The ariadne Approach to Web-based Information Integration

Head
 of
 State

Person

ISA

ISA

Map database
country nm
 map

country nm

Country

person nm
title
country nm

World Governments
 database

country nm
 total area
 latitude
 longitude
 population
 etc ...

CIA factbook database

 NATO
 Country

NATO Countries
 database

year joined

Figure 4: Domain Model with Database Sources

2.2.1. Integration Axiom Precompilation

To facilitate query planning, we developed an algorithm [5] to compile the local-

as-view source descriptions into global-as-view integration axioms. Each integration

axiom speci�es an alternative combination of sources that produces a maximal set

of attributes for a domain class. Once the integration axioms are compiled, �nding

the sources relevant for a user domain query is straightforward. For each domain

class in the query the system looks up the integration axioms for that class and its

attributes mentioned in the query. The body of each integration axiom is a formula

containing only source terms that can be substituted by the corresponding domain

class in the query. Compiling axioms a priori is a space-for-time optimization,

allowing the system to amortize the cost of producing them over all queries, thus

avoiding repetition of costly run-time search. This section presents the highlights

of the approach, see [5] for details.

Ariadne generates the integration axioms from the source descriptions and the

structure of the domain model. The axiom compilation algorithm is based on the

iterative application of a set of inference rules. The rules are applied in parallel,

constructing a generation of novel integration axioms from existing axioms. The

process is repeated until quiescence. The �ve rules are:

� Direct Rule: Inverts the source descriptions.

� Covering Rule: Exploits the covering relationships in the domain model (when

a class is de�ned as the union of its subclasses, the subclasses constitute a

covering of the class).

� De�nition Rule: Exploits the constraints in the de�nition of a domain class.

� Inherit Rule: Exploits the inheritance of superclass attributes via shared keys.

International Journal of Cooperative Information Systems 7

� Compose Rule: Combines axioms on a given class to provide additional at-

tributes.

The compiled axioms from the domain of Figure 4 are shown in Figure 5. In

the �rst generation the source descriptions are inverted and installed as axioms via

the direct rule (the axioms 1.1, 1.2, 1.3, and 1.4). Then, the sources are com-

posed iteratively to produce more attributes for each domain class. In the second

generation, the inherit rule produces axioms 2.1 and 2.2 by adding the NATO-db

source to the body of axioms 1.1 and 1.2 which specilizes them for NATO coun-

tries and provides the additional `map' attribute. Also, the compose rule generates

axiom 2.3 by joining the CIA Factbook database and the Map database over the

common key attribute 'country-nm'. Finally, in the third generation, the inherit

rule constructs axiom 3.1 by adding the NATO-db source to axiom 2.3 in order to

produce the maximal number of attributes that the available sources provide for

the `NATO Country' class. In this domain, rule application takes three generations

until quiescence producing the 8 axioms of Figure 5.

Country(cn ta lat long pop) , CIA-db(cn ta lat long pop) 1.1

Country(cn map) , Map-db(cn map) 1.2

Country(cn ta lat long pop map) , CIA-db(cn ta lat long pop)

^ Map-db(cn map) 2.3

NATO-Country(cn year) , NATO-db(cn year) 1.3

NATO-Country(cn ta lat long pop year) , CIA-db(cn ta lat long pop)

^ NATO-db(cn year) 2.1

NATO-Country(cn map year) , Map-db(cn map)

^ NATO-db(cn year) 2.2

NATO-Country(cn ta lat long pop map year) , CIA-db(cn ta lat long pop)

^ Map-db(cn map)

^ NATO-db(cn year) 3.1

Head-of-State(pn cn title) , WorldGov-db(pn cn title) 1.4

Figure 5: Compiled Integration Axioms

2.2.2. Query Planning

Once the integration axioms have been compiled, Ariadne is ready to accept

user queries expressed over terms of the domain model. Query planning for each

user query follows two steps. First, the query is parsed, simpli�ed, and rewritten

so that each class mentioned in the query is the most speci�c according to the

de�nitions in the domain model. This ensures that the appropriate integration

axioms are used during query planning. For example, consider an extension to

Figure 4 which includes the class `Military Leader', de�ned as the subclass of `Head

of State' where the title is equal to \general", \colonel", etc. An input query that

asks for information about a `Head of State' whose title is \general" will �nd all the

relevant axioms associated with the class `Military Leader' as opposed to the class

8 The ariadne Approach to Web-based Information Integration

`Head of State' that is mentioned in the query.

Second, the query is optimized using a transformational query planner [4, 3]

based on the Planning by Rewriting paradigm [2, 1]. The query planner �rst con-

structs an initial query evaluation plan based on a depth-�rst parse of the query.

This initial plan is possibly suboptimal, but it is generated very eÆciently. Then,

the plan is iteratively transformed using a set of rewriting rules in order to opti-

mize the plan cost. The rewriting rules are derived from properties of the relational

algebra, the distributed environment, and the integration axioms in the applica-

tion domain. The space of plan rewritings is explored eÆciently using local search

methods. During the rewriting process, the planner considers the di�erent sources,

operators, and orders of the operators that can be used to answer the query.

The query planner has a modular, declarative, and extensible architecture. The

initial plan generator, the cost metric, the set of rewriting rules, and the strategy

used during the rewriting search, are all modules that can be extended or replaced

independently. Since our query planner is based on a domain-independent approach

to planning, it is extensible in a principled way and very exible. The speci�cation

of both the plan operators and the plan rewriting rules is declarative.

As an example, consider the processing required to retrieve the names of all

NATO countries and the year they joined NATO for those countries that have a

population of less than 10 million. In this case, the relevant axiom that provides

the population of NATO countries and the year of incorporation (using a minimal

set of sources) is axiom 2.1 in Figure 5 (if there were several alternative axioms for

that information, the planner would consider them during the search). Based on

this axiom, assume that the planner constructs the initial plan of Figure 6. This

plan is suboptimal since it retrieves the names and population for all countries from

the Factbook source, the names and year from the NATO source, and then joins

both relations locally, which is very costly since the Factbook source is quite large.

Moreover, the selection on population is done after the join, instead of being used

to reduce the number of tuples that participate in the join. The query planner

rewrites this initial plan producing the optimized plan of Figure 7. The optimized

plan �rst retrieves the name and year of the NATO countries, projects the country

names, and passes NATO country names so that only the population of NATO

countries is retrieved from the CIAWorld Factbook source. In addition the selection

on population has been placed immediately after the retrieval from the Factbook

source to further reduce the number of tuples participating in the join.

Ariadne's uniform integration model is expressive enough to encompass a wide

variety of web sources but simple enough to allow for eÆcent query planning. In the

following sections, we discuss how, based on this simple model, we provide a coherent

set of solutions for each level of the problem of integrating information on the web.

First, we discuss how we model and automatically learn wrappers for individual

web pages. Second, we describe the modeling that allows our query planner to

generate plans that navigate among pages. Third, we present techniques to identify

entities across sites so that they can be integrated. Fourth, we describe further

International Journal of Cooperative Information Systems 9

JOIN on
country_nm

SELECT
population < 10M

RETRIEVE country_nm, year_joined
from NATO−Country
@ NATO−db

RETRIEVE country_nm population
from Country
@ Factbook−db

Figure 6: A Suboptimal Initial Query Plan

PROJECT on
country_nm

SELECT
population < 10M

JOIN on
country_nm

RETRIEVE country_nm, year_joined
from NATO−Country
@ NATO−db

RETRIEVE country_nm population
from Country
@ Factbook−db

Figure 7: An Optimized Query Evaluation Plan

performance optimization by selectively materializing data. Finally, we describe

some of the applications that have been developed using Ariadne and assess the

approach.

3. Modeling the Information on a Page

The previous section described how the planner decomposes a complex query

into simple queries on individual information sources. To treat a web page as an

information source so that it can be queried, Ariadne needs a wrapper that can

extract and return the requested information from that type of page. While we

cannot currently create such wrappers for unrestricted natural language texts, many

information sources on the Web are semistructured. A web page is semistructured

if information on the page can be located using a concise formal grammar, such as

a context-free grammar. Given such a grammar, the information can be extracted

from the source without recourse to sophisticated natural language understanding

techniques. For example, a wrapper for pages in the CIA Factbook would be able to

extract �elds such as the Total Area, Population, etc. based on a simple grammar

describing the structure of Factbook pages.

Our goal is to enable application developers to easily create their own wrappers

for web-based information sources. To construct a wrapper, we need both a semantic

model of the source that describes the �elds available on that type of page and a

syntactic model, or grammar, that describes the page format, so the �elds can be

10 The ariadne Approach to Web-based Information Integration

extracted. Requiring developers to describe the syntactic structure of a web page

by writing a grammar by hand is too demanding, since we want to make it easy

for relatively unsophisticated users to develop applications. Instead, Ariadne has a

\demonstration-oriented user interface" (DoUI) where users show the system what

information to extract from example pages. Underlying the interface is a machine

learning system for inducing grammar rules.

Figure 8 shows how an application developer uses the interface to teach the

system about CIA Factbook pages, producing both a semantic model and a syntactic

model of the source. The screen is divided into two parts. The upper half shows

an example document, in this case the Netherlands page. The lower half shows

a semantic model, which the user is in the midst of constructing for this page.

The semantic model in the �gure indicates that the class Country has attributes

such as Total Area, Coastline, Latitude, Longitude, etc. The user constructs the

semantic model incrementally, by typing in each attribute name and then �lling in

the appropriate value by cutting and pasting the information from the document. In

doing so, the user actually accomplishes two functions. First, he provides a name for

each attribute. Notice that he can choose the same names as used in the document

(e.g., \Total area") or he can choose new/di�erent names (e.g., \Latitude"). As we

will explain later, the attribute names have signi�cance, since they are the basis for

integrating data across sources.

Figure 8: Creating a Wrapper by Demonstration

The second function achieved by the user's demonstration is to provide examples

so that the system can induce the syntactic structure of the page. Ideally, after

the user has picked out a few examples for each �eld, the system will induce a

International Journal of Cooperative Information Systems 11

grammar suÆcient for extracting the required information for all pages of this type.

Unfortunately, grammar induction methods may require many examples, depending

on the class of grammars being learned. However, we have observed that web pages

have common characteristics that we can take advantage of, so that a class of

grammars suÆcient for extraction purposes can be rapidly learned in practice.

More speci�cally, we can describe most semistructured web pages as embedded

catalogs. A catalog is either a homogeneous list, such as a list of numbers, (1,3,5,7,8),

or a heterogeneous tuple, such as a 3-tuple consisting of a number, a letter, and a

string, (1,A,\test"). An embedded catalog (or, for short, EC) is a catalog where the

items themselves can be catalogs. As an example, consider the fragment of the CIA

Factbook page shown in Figure 8. At the top level, it can be seen as a 9-tuple that

consists of Map References, Total Area, Land Area, Comparative Area, Coastline,

Latitude, Longitude, Total Land Boundaries, and Border Countries. Furthermore,

the Border Countries represent an embedded list of 2-tuples that contain a Country

Name and a Border Length. Note that the illustrative page description above

contains all the �elds in the document, while in practice, the user can identify only

the items of interest for a particular application. For instance, a user can model

the CIA Factbook page as a 4-tuple that consists of the Total Area, Latitude,

Longitude, and Border Countries, where the last �eld is an embedded list of 2-

tuples that contain a Country Name and a Border Length.

An embedded catalog is a structured description of the information on a page,

and can be (trivially) converted into an XML view of the document, as illustrated

in Figure 9.

<!DOCTYPE document [

<!ELEMENT document (TotalArea, Latitude, Longitude,

Neighbors_LIST)>

<!ELEMENT TotalArea (#PCDATA)>

<!ELEMENT Latitude (#PCDATA)>

<!ELEMENT Longitude (#PCDATA)>

<!ELEMENT Neighbors_LIST (Neighbor*)>

<!ELEMENT Neighbor (Name, BorderLength)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT BorderLength (#PCDATA)>] >

Figure 9: Sample XML description of an embedded catalog.

Besides being used as data schema in the integration process, the EC description

of a document plays another important role: in Ariadne, we use a document's EC

to extract the data in a hierarchical manner. For instance, in order to extract

all the neighboring countries from a document, we begin by extracting the Border

Countries from the whole document; then we iterate through this list, and break

it down to individual 2-tuples; �nally, from such tuples, we extract each individual

Country Name. In other words, if we look at EC as a tree-like structure describing

the embedded data, in order to extract a relevant item we must successively extract

12 The ariadne Approach to Web-based Information Integration

each of its ancestors from their respective parents in the tree. Our approach has a

major advantages: it transforms a potentially hard problem (i.e., extracting all items

from an arbitrarily complex document) into a set of simpler ones (i.e., extracting

one individual item from its parent in the EC). This is particularly appealing when

a document contains a large number of items and multiple levels of embedded data

(e.g., list within lists).

Because web pages are intended to be human readable, special markers often

play a role identifying the beginning or ending of an item in an embedded catalog,

separating items in a homogeneous list, and so on. These distinguishing markers

can be used as landmarks for locating information on a page. A landmark grammar

describes the position of a �eld via a sequence of landmarks, where each landmark

is a sequence of tokens and wildcards (e.g., Number, CapitalizedWord, AllCaps,

etc.). For example, to �nd the beginning of the longitude, we can use the rule

R1 = SkipTo(Geographic coordinates) SkipTo(,)

which has the following meaning: start from the beginning of the document and

skip everything until you �nd the landmark Geographic coordinates; then, again,

ignore all tokens until you encounter the �rst comma. Similarly, we can use the rule

R2 = SkipTo(
 Land boundaries)

to identify the end of the longitude �eld (
 is the HTML tag that forces the line

break, and, consequently, it is not displayed by the browser in Figure 8).

In order to fully de�ne a wrapper, one needs to provide the embedded catalog,

together with one extraction rule for each �eld and one additional iteration rule

for each list in the EC (iteration rules are applied repeatedly to the content of the

list in order to extract all individual tuples). Our recent work [26] shows that in

practice, a subclass of landmark grammars (i.e., linear landmark grammars) can be

learned rapidly for a variety of web pages using a greedy covering algorithm. There

are several reasons for this. First, because web pages are intended to be human

readable, there is often a single landmark that distinguishes or separates each �eld

from its neighbors. Therefore, the length of the grammar rules to be learned will

usually be very small, and learning will be easy in practice. Second, during the

demonstration process, users traverse a page from top-to-bottom, picking out the

positive examples of each �eld. Any position on the page that is not marked as a

positive example is implicitly a negative example. Thus, for every positive example

identi�ed by the user, we obtain a huge number of negative examples that the

covering algorithm can use to focus its search.

The empirical evaluation of stalker [26], our wrapper induction system, shows

that in most of the cases our system learns perfect extraction rules (i.e., 100%

accuracy) based on just a handful of examples. We tested stalker on 30 infor-

mation sources, which required the induction of 206 di�erent rules. In 182 cases

stalker generated a perfect rule (in most of the cases based on just a couple of

labeled examples), and 18 other rules had an accuracy above 90% based on as few

as 10 training examples. On the same 30 information sources, wien [21], which was

International Journal of Cooperative Information Systems 13

the �rst wrapper induction system, requires one to two orders of magnitude more

labeled examples in order obtain a similar or worse performance.

There are several di�erences between the approaches taken by stalker and

wien. First of all, wien's approach to handling documents with multiple levels of

embedded data turned out to be impractical: even for the domains in which such

a wrapper exists, the learning algorithm failed to �nd it. Second, wien uses a very

simple extraction language. By assuming that all the �elds are always present and

in exactly the same order, wien is capable of learning the rules extremely fast,

provided that they exist. On the other hand, these assumptions make it impossible

to wrap more complicated sources. Last but not least, the same simplicity of the

extraction language, together with the fact that wien does not extract the sibling

�elds independently of each other, leads to failure to wrap sources from which

stalker �nds perfect rules for most of the items, and slightly imperfect ones for

the remaining �elds.

A quite di�erent approach to wrapper induction is the one used in SoftMealy

[16]. This system induces extraction rules expressed as �nite transducers, and it

addresses most of the wien's shortcomings. However, its empirical evaluation is

quite sketchy, which makes it hard to compare with wien and stalker. There are

three other recent systems that are focusing on learning extraction rules from online

documents: srv [13], rapier [11], and whisk [27]. Even though these approaches

are mostly concerned with extracting data from natural language text, they could

be also applied to some simple wrapper induction problems.

The modeling tool we have described enables unsophisticated users to turn web

pages into relational information sources. But it has a second advantage as well. If

the format of a web source changes in minor respects, the system could induce a new

grammar by reusing examples from the original learning episode, without any hu-

man intervention (assuming the underlying content has not changed signi�cantly).

This is a capability we are currently exploring.

4. Modeling the Information in a Site: Connections between Pages

The previous section showed how Ariadne extracts information from a web page

to answer a query. However, before extracting information from a page, Ariadne

must �rst locate the page in question. Our approach, described in this section, is

to model the information required to \navigate" through a web site, so that the

planner can automatically determine how to locate a page.

For example, consider a query to our example information agent asking for the

population of the Netherlands. To extract the population from the Factbook's page

on the Netherlands, the system must �rst �nd the URL for that page. A person

faced with the same task would look at the index page for the Factbook, shown in

Figure 10, which lists each country by name together with a hypertext link to the

page in question. In our approach, Ariadne does essentially the same thing. The

index page serves as an information source that provides a URL for each country

14 The ariadne Approach to Web-based Information Integration

Figure 10: CIA Factbook Index

page. These pages in turn serve as a source for country-speci�c information.

To create a wrapper for the index page, the developer uses the approach de-

scribed in the last section, where we illustrated how a wrapper for the Factbook's

country pages is created. There is only one di�erence: this wrapper only wraps

a single page, the index page. The developer creates a semantic model indicating

that the index page contains a list of countries, each with two attributes, country-

nm and country-URL.d The learning system induces a grammar for the entire page

after the developer shows how the �rst few lines in the �le should be parsed.

As the wrappers for each source are developed, they are integrated into the

unifying domain model. Figure 11 shows the domain model for the completed

geopolitical agent. (Notice that we have substituted web source wrappers for the

hypothetical databases used previously.) To create the domain model, the devel-

oper speci�es the relationship between the wrappers and the domain concepts. For

instance, the developer speci�es that the Factbook country wrapper and the Fact-

book index wrapper are both information sources for \country" information, and

he identi�es which attributes are keys (i.e., unique identi�ers). In the example,

\country-nm" and \country-URL" are both keys. Binding constraints specify the

input and output of each wrapper (shown by the small directional arrows in Fig-

ure 11). The country page wrapper takes a country-URL, and acts as a source

for \total area", \population", \latitude", etc. The index wrapper takes a country

namee and acts as a source for \country-URL". Given the domain model and the

binding constraints, the system can now construct query plans. For instance, to

dDuring the demonstration, a check box is used to extract a URL from a hyperlink, as opposed to

grabbing text.
eNo URL is needed as input to the index page wrapper since the URL of the index page is a

constant.

International Journal of Cooperative Information Systems 15

obtain the population of a country given its name, the planner determines that the

system must �rst use the country name to retrieve the country-URL from the index

page wrapper, and then use the country-URL to retrieve the population data from

the country page wrapper.

Head
 of
 State

Person

ISA

ISA
Country

country nm
 map World Governments

 page wrapper

country nm

Factbook index wrapper

Map database

Factbook country page wrapper
 country url
 total area
 latitude
 longitude
 population

country nm
country url

country nm
person nm
title

 NATO
 CountryNATO page wrapper

Figure 11: Domain Model with Web Sources

Explicitly modeling `navigation' pages, such as the Factbook index, as informa-

tion sources enables us to reuse the same modeling tools and planning methodology

underlying the rest of the system. The approach works well in part because there

are only two common types of navigation strategies used on the Web { direct index-

ing and form-based retrieval. We have already seen how index pages are handled;

form-based navigation is also straightforward. A wrapper for an HTML form simply

mimics the action of the form, taking as input a set of attributes, each associated

with a form parameter name, and communicating with the server speci�ed in the

form's HTML source.

When the resulting page is returned, the wrapper extracts the relevant attributes

in the resulting page. Imagine, for instance, a form-based front end to the Factbook,

where the user types in a country name and the form returns the requested country

page. To create a wrapper for this front end, the developer would �rst specify that

the parameter associated with the type-in box would be �lled by a \country-nm".

He would then specify how the system should extract information from the page

returned by the form using the approach described in the last section.

The Factbook example described in this section illustrates our basic approach to

modeling navigation pages. Many web sites are more complex than the Factbook.

The approach still works, but the models become more involved. For instance, in-

dexes can be hierarchical, in which case each level of the hierarchy must be modeled

as an information source. Imagine the top-level Factbook index was a list of letters,

so that clicking on a letter \C" would produce an index page for countries start-

16 The ariadne Approach to Web-based Information Integration

ing with \C" (a \subindex"). We would model this top level index as a relation

between letters and subindex-URL's. To traverse this index, we also need an infor-

mation source that takes a country name and returns the �rst letter of the name

(e.g., a string manipulation program). Thus, altogether four wrappers would be

involved in the navigation process, as shown in Figure 12. Given a query asking for

the Netherlands' population, the �rst wrapper would take the name \Netherlands",

call the string manipulation program, and return the �rst letter of the name, \N".

The second wrapper would take the letter \N", access the top level index page, and

return the subindex-URL. The third wrapper would take the subindex-URL and the

country name, access the subindex page for countries starting with \N", and return

the country-URL. Finally, the last wrapper would take the country-URL and access

the Netherlands page. The advantage of our approach is that all these wrappers

are treated uniformly as information sources, so the query planner can automati-

cally determine how to compose the query plan. Furthermore, the wrappers can be

semi-automatically created via the learning approach described earlier, except for

the string manipulation wrapper, which is a common utility.

Country

Factbook country page wrapper
 country url
 total area
 latitude
 longitude
 population

String Manipulation
program wrapper

 country nm
 first letter

 subindex url
 country nm
 country url

Subindex wrapper Top level index wrapper
country nm
first letter
subindex url

Figure 12: Domain Model with Hierarchical Index

5. Modeling Information Across Sites

Within a single site, entities (e.g., people, places, countries, companies, etc.)

are usually named in a consistent fashion. However, across sites, the same entities

may be referred to with di�erent names. For example, the CIA Factbook refers

to \Burma" while the World Governments site refers to \Myanmar". Sometimes

formatting conventions are responsible for di�erences, such as \Denmark" vs. \Den-

mark, Kingdom of". To make sense of data that spans multiple sites, we need to

be able to recognize and resolve these di�erences.

Our approach is to select a primary source for an entity's name and then provide

a mapping from that source to each of the other sources where a di�erent naming

scheme is used. An advantage of the Ariadne architecture is that the mapping itself

can be represented as simply another wrapped information source. One way to do

International Journal of Cooperative Information Systems 17

this is to create a mapping table, which speci�es for each entry in one data source

what the equivalent entity is called in another data source. Alternatively, if the

mapping is computable, it can be represented by a mapping function, which is a

program that converts one form into another form.

Figure 13 illustrates the role of mapping tables in our geopolitical information

agent. The Factbook is the primary source for a country's name. A mapping table

maps each Factbook country name into the name used in the World Governments

source (i.e., WG-country-nm). The mapping source contains only two attributes,

the (Factbook) country name and theWG-country-nm. The NATO source is treated

similarly. So, for example, if someone wanted to �nd the Heads of State of the

NATO countries, the query planner would retrieve the NATO country names from

the NATO wrapper, map them into (Factbook) country names using the NATO

mapping table, then into the World Government country names using the World

Governments mapping table, and �nally retrieve the appropriate heads of state from

the World Governments wrapper.

Head
 of
 State

Person

ISA

ISA
Country

country nm
 map World Governments

 page wrapper

Factbook index wrapper

Map database

Factbook country page wrapper
 country url
 total area
 latitude
 longitude
 population

country nm
country url

World Governments
 mapping table

country nm
WG country nm

WG−country nm
person nm
title

Nato country nm

 NATO
 CountryNATO page wrapper

NATO mapping table

country nm
NATO country nm

Figure 13: Domain Model with Mapping Tables

We have developed a semi-automated method for building mapping tables and

functions by analyzing the underlying data in advance. The method attempts to pair

each entity in one source with a corresponding entity (or entities, in some cases) in

another source. The basic idea is to use information retrieval techniques to provide

an initial mapping (following [12]), and then to apply machine learning techniques to

improve the mapping. The initial mapping matches entities from two sources based

on their textual similarity. For example, \Denmark" and \Denmark, Kingdom of"

are assumed to refer to the same entity because both names include \Denmark", an

infrequently-occurring word. In the subsequent learning phase, the system learns

two types of rules to help improve/verify the initial mapping. Transformation rules

identify textual transformations like acronyms, abbreviations, and phrase orderings

that are common in the domain. For instance, the system can learn that \Rep" is a

18 The ariadne Approach to Web-based Information Integration

commonly used abbreviation for \Republic", or that one source commonly employs

acronyms, or that one source represents person names as \LastName, Firstname",

while the other uses \FirstName LastName". The system also learnsMapping rules

which are used when we can compare entities along multiple attributes.

For example, consider a multi-year Factbook application which includes yearly

versions of the Factbook (each year a new version of the CIA Factbook is released),

as shown in Figure 14. Sometimes countries in the new Factbook have new names,

or countries merge or split. These name confusions can often be resolved by using

the attributes containing geographical information, e.g., land area, latitude and

longitude. These attributes stay constant over time and are unique to a country,

so they are good indicators of a mapping. Mapping rules specify the importance of

each attribute when computing a mapping.

 country url
 total area
 latitude
 longitude
 population

 country url
 total area
 latitude
 longitude
 population

Country

 country url
 total area
 latitude
 longitude
 population

 country url
 total area
 latitude
 longitude
 population

 country url
 total area
 latitude
 longitude
 population

ISA

Country95

Factbook95 country page wrapper

country nm
country95 nmcountry95 nm

country url Country95 mapping table

Factbook95 index wrapper

 country nm
 year

Country knowledgebase

Country99 country nm
country url

Factbook99 index wrapper

 country url
 total area
 latitude
 longitude
 population

Factbook99 country page wrapper

ISA

Figure 14: Multi-Year Factbook Model

We are prototyping an active learning method for learning transformation rules

and mapping rules. In our approach, a human is asked to verify some of the pairs

in the initial mapping, i.e., to indicate whether the pairs are correctly or incorrectly

matched. Then the system attempts to learn new rules, and selects additional pairs

for the human to verify. The system selects the pairs that will be most valuable

for con�rming/discon�rming the hypotheses explored by the learning algorithm.

The goal is to obtain a mapping for which the system is highly con�dent, while

minimizing the time the human must spend.

6. Performance Optimization by Selective Materialization

An issue with building applications using Ariadne is that the speed of the result-

ing application is heavily dependent on the individual web sources. The response

time may be high even when the query planner generates high-quality information

integration plans. This is because for some queries a large number of pages may

have to be fetched from remote Web sources and some sources may be very slow.

In this section we describe our approach to optimizing agent performance by lo-

cally materializing selected portions of the data. The materialized data is simply a

locally stored relation that is handled using the same uniform representation and

International Journal of Cooperative Information Systems 19

query planning techniques used throughout the system.

The brute force approach would be to simply materialize all the data in all the

Web sources being integrated. However this is impractical for several reasons. First

the sheer amount of space needed to store all this data locally could be very large.

Second, the data might get updated at the original sources and the maintenance cost

for keeping all the materialized data consistent could be very high. Our approach

is thus to materialize data selectively. In this approach to optimizing performance

by selectively materializing data there are two key issues that must be addressed.

1. What is the overall framework for materializing data, i.e., how do we represent

and use the materialized data?

2. How do we automatically identify the portion of data that is most useful to

materialize?

In [7] we presented a framework for representing and using materialized data in

an information agent. The basic idea is to locally materialize useful data and de�ne

it as another information source for the agent. The agent then considers using the

materialized data instead of retrieving data from remote sources to answer user

queries. For instance, in the countries application suppose we determined that the

population and national product of all European countries was queried frequently

and thus useful to materialize. The system would retrieve this data and de�ne

it as an additional information source as shown in Figure 15. Given a query the

planner would use the materialized data instead of the original Web source(s) to

answer the query when it reduced the cost of a query. The system selects the data

to materialize by considering a combination of several factors which are described

below.

Head
 of
 State

Person

ISA

ISA
Country

country nm
 map World Governments

 page wrapper

country nm

Factbook index wrapper

Map database

Factbook country page wrapper
 country url
 total area
 latitude
 longitude
 population

country nm
country url

country nm
person nm
title

 NATO
 CountryNATO page wrapper

EUROPEAN
Country

population
national product

ISA

Materialized
Database

Figure 15: Materialized Data as Another Source

20 The ariadne Approach to Web-based Information Integration

6.1. The Distribution of User Queries

From the user query distribution we determine what classes of data are queried

most frequently by users since it is often useful to materialize such classes. We

have developed an algorithm known as the CM (Cluster and Merge) algorithm [8],

which identi�es useful classes of information to materialize by extracting patterns in

user queries. A key feature of this algorithm is that it �nds compact patterns to be

extracted. Compact patterns are important from a query planning perspective since

we de�ne a new information source in the agent for each class of data materialized. A

set of fragmented patterns will result in a large number of new sources. The problem

of query planning in an information agent is combinatorially hard and having a very

large number of sources could create performance problems for the planner. With

compact patterns we need to materialize fewer classes of data and thus de�ne fewer

new information sources. For instance in the countries application suppose the class

of information \the population and ethnic divisions of all European countries" was

a frequently queried class of data, the CM algorithm would extract this class as a

pattern from the query distribution. Even if some European countries were never

queried, it might still materialize all of the data for the European countries in order

to minimize the number of patterns stored.

6.2. The Structure of Queries and Sources

As described earlier, we provide database-like query access to otherwise only

browsable Web sources by building wrappers around the sources. As a result certain

kinds of queries can be very expensive as a lot of the functionality for structured

querying of these sources needs to be provided by the wrapper or the mediator.

For instance in the countries application, the CIA Factbook source is structured

such that selection queries, such as say determining which countries are European

countries requires the wrapper to retrieve pages of all countries in the Factbook

source, which takes a long time.

In many kinds of queries we can materialize a portion of data which if stored

locally greatly improves the response time of the expensive queries. In the above

example if we materialize locally the names and continents of all countries, deter-

mining which countries are European countries (the step that requires otherwise

fetching pages of all countries from the source) can be done locally and much faster.

We have generalized this strategy for various kinds of queries that may be expen-

sive such as selection queries, joins, ordered joins etc. The system analyzes the user

query interface to determine what queries can be asked in an application and uses

the mediator query cost estimator and also speci�cation of the structure of Web

sources to determine which of these queries can be expensive. It then prefetches

and materializes data based on heuristics that use information about the kind of

query (selection, join etc.) and the structure of the source (whether it supports

selections etc.) to speed up the processing of the expensive queries.

International Journal of Cooperative Information Systems 21

6.3. Updates at Web Sources

Finally we must address the issue of updates at Web sources. First the materi-

alized data must be kept consistent with that in the Web sources. It may also be

that the user is willing to accept data that is not the most recent in exchange for a

fast response to his query (using data that is materialized). Thus we need to deter-

mine the frequency with which each class of data materialized needs to be refreshed

from the original sources. Next the total maintenance cost for all the classes of

data materialized must be kept within a limit that can be handled by the system.

We provide a language for describing the update characteristics of each source and

also user requirements for freshness. The system then takes update frequency and

maintenance cost into account when selecting data to materialize. For instance,

considering the countries application again, the Factbook is a source that does not

change so we materialize whatever data we want to prefetch or is frequently queried

from that source as there is no maintenance cost for the materialized data. However

we may not want to materialize data from the World Governments source as that

is a source where data can change anytime.

We have implemented a materialization system for Ariadne based on the above

ideas. We present experimental results in Table 1 demonstrating the e�ectiveness

of our approach. Speci�cally we show the improvement in performance obtained by

materializing data locally in Ariadne using our system.

Query Response Response Response Improvement Improvement

Set Time Time Time

(No opt.) (Ariadne) (Page Level) (Ariadne) (Page Level)

Q1 41233 sec 1515 sec 36974 sec 96% 10%

Q2 47935 sec 2198 sec 42502 sec 95% 13%

Table 1: Experimental Results

Table 1 shows the experimental results for the countries application. We provide

results showing the improvement in performance due to our system and compare

it with an alternative scheme of page level caching with the same local space. We

measure query response times with and without materialization for two query sets -

Q1, which is a set of queries we generated and in which we introduced some distinct

query patterns, and Q2, which is a set of actual user queries that we logged from

a version of the countries application that was made available online for several

months. There is signi�cant performance improvement due to our materialization

system. Our system also signi�cantly outperforms the page level caching scheme

for both query sets Q1 and Q2. The primary reason is that with our system we

are much more exible in selecting the portion of data that we want to materialize

in terms of the attributes and tuples we want to specify. In the page level caching

scheme, we can only materialize either all or none of an entire web page which causes

local space to be wasted for storing data that may not be frequently queried. Also

22 The ariadne Approach to Web-based Information Integration

in this particular application source structure analysis proves to be very e�ective

as the system locally materializes attributes of countries to speed the processing of

certain very expensive kinds of selection queries.

7. Applications

We have used Ariadne to build a variety of applications. We list a few of them

below to illustrate the generality of our approach.

As shown in the examples in this paper, we built a country information agent

with Ariadne that combines data about the countries in the world from a variety

of information sources. The agent extracts and integrates data from from the CIA

World Factbook. The Factbook is published each year, so the agent can support

queries that span multiple years. The agent also extracts data from other related

sources such as the World Governments site, which provides up-to-date information

about world leaders. This application provides a good example where signi�cant

added value was added to the data sources by providing the additional structure

where only the relevant data is extracted and returned for speci�c countries.

We have built a system using Ariadne that integrates data about restaurants and

movie theaters and places the information on a map [9]. The application extracts

restaurant names and addresses from CuisineNet, theater names and addresses from

Yahoo Movies, movies and showtimes for each theater also come from Yahoo Movies,

and trailers for movies from Hollywood.com. The addresses are run through the

Etak geocoder to convert street addresses into the corresponding latitude and lon-

gitude. Finally, Ariadne uses the US Census Bureau's Tiger Map Server to produce

a map with all of the restaurants and theaters for a requested city. Clicking on

one of the points of the map will bring up the restaurant review or list of movies

as appropriate. If the user selects a speci�c movie, Ariadne will then play the ap-

propriate trailer. This application provides a compelling integration example that

combines a variety of multimedia data sources.

We have applied Ariadne to integrate online electronic catalogs to provide a

more comprehensive virtual catalog. In this application, Ariadne combines data

on pricing, availability, manufacturer, and so on from four major electronic part

suppliers. Each site requires several wrappers in order to navigate to the page that

provides the required data. In several cases, the data on a given part is spread over

multiple pages at a site. This application provides an example of a virtual data

source where up-to-date information on electronic parts is made available from

multiple suppliers without maintaining any local data.

8. Discussion

There is a large body of literature on information integration [30], and more recently,

several projects focusing speci�cally on information integration on the Web, such as

Tukwila [29], Araneus [25], the Information Manifold [23], Occam [22], Infomaster

[15], and InfoSleuth [17]. These systems focus on a variety of issues, including the

International Journal of Cooperative Information Systems 23

problems of representing and selecting a relevant set of sources to answer a query,

handling binding patterns, and resolving discrepancies among sources. All of this

work is directly relevant to Ariadne, but no other system handles the broad range

of practical issues that arise in modeling information within a single page, across

pages at a site, and across sites to support web-based information integration.

We believe that Ariadne is successful, in terms of the broad applicability of the

approach, because it combines a simple representation scheme with sophisticated

modeling tools that map web information sources into this simple representation.

There are many examples of impressive AI systems based on relatively simple rep-

resentational schemes. In the realm of planning, recent examples include SATplan

[18] and Graphplan [10]; the former employs a propositional CSP approach, the

latter, a graph-based search. In machine learning, propositional learning schemes

(e.g., decision trees) have been dominant. Though it is often diÆcult to understand

exactly what a simple representational scheme buys you computationally, one thing

seems clear: systems with simple representations are often easier to design and

understand.

Ariadne's representation scheme was adopted from database systems, where the

world consists of a set of relations (or tables) over objects, and simple relational

operators (retrieve, join, etc.) are composed to answer queries. This representa-

tion makes it straightforward to integrate multiple databases using an AI planner.

Ariadne's planner can eÆciently search for a sequence of joins, selections, etc. that

will produce the desired result without needing to do any sophisticated reasoning

about the information sources themselves.

The Web environment is much more than a set of relational tables, of course.

What makes Ariadne possible are the modeling tools that enable a user to create

a database-like view of the Web. Other competing approaches to information inte-

gration on the web (such as the ones mentioned above) have also adopted database-

oriented representational schemes, but they do not include the tools that enable

developers to create these models for real web sites. Where our approach becomes

challenging (and could break down) is in situations where the \natural" way to rep-

resent a web site is not possible due to limitations of the underlying representation.

One such limitation is that Ariadne cannot reason about recursive relations.

(To do this properly would require query plans to contain loops.) This has many

practical rami�cations. For example, consider web pages that have a `more' button

at the bottom, such as Alta Vista's response pages. It would be natural to represent

each `more' button as a pointer to the next page in a list, but there is no way to

do this without a recursive relation. Instead, we can build knowledge about `more'

buttons in our wrapper generation tools, so the process of following a `more' buttons

is done completely within a wrapper, hiding the complexity from the query planner.

Another rami�cation of the planner's inability to reason about recursive relations

shows up with hierarchical indexes like Yahoo, where there is no �xed depth to the

hierarchy. The natural way to model such pages is with a parent-child relation.

Instead, the alternative is to build a more sophisticated wrapper that computes the

24 The ariadne Approach to Web-based Information Integration

transitive closure of the parent-child relationship, so that we can obtain all of a

node's descendants in one step.

There is an obvious tension between the expressiveness of the representation and

the burden we place on the modeling tools. Some researchers, such as Friedman et

al. [14], have introduced more expressive representations for modeling web pages

and their interconnections. Our approach has been to keep the representation and

planning process simple, compensating for their limitations by relying on smarter

modeling tools. As we have described, the advantage is that we can incrementally

build a suite of modeling tools that use machine learning, statistical inference, and

other AI techniques, producing a system that can handle a surprisingly wide range

of tasks.

9. Acknowledgements

The research reported here was supported in part by the Rome Laboratory of the

Air Force Systems Command and the Defense Advanced Research Projects Agency

(DARPA) under contract number F30602-98-2-0109, in part by the United States

Air Force under contract number F49620-98-1-0046, and in part by the Integrated

Media Systems Center, a National Science Foundation Engineering Research Center,

Cooperative Agreement No. EEC-9529152. The views and conclusions contained

in this article are the authors' and should not be interpreted as representing the

oÆcial opinion or policy of any of the above organizations or any person connected

with them.

1. Jos�e Luis Ambite. Planning by Rewriting. PhD thesis, Department of Computer

Science, University of Southern California, 1998.

2. Jos�e Luis Ambite and Craig A. Knoblock. Planning by rewriting: EÆciently generat-

ing high-quality plans. In Proceedings of the Fourteenth National Conference on
Arti�cial Intelligence, Providence, RI, 1997.

3. Jos�e Luis Ambite and Craig A. Knoblock. Flexible and scalable query planning in

distributed and heterogeneous environments. In Proceedings of the Fourth Inter-
national Conference on Arti�cial Intelligence Planning Systems, Pittsburgh, PA,
1998.

4. Jos�e Luis Ambite and Craig A. Knoblock. Flexible and scalable cost-based query

planning in mediators: A transformational approach. Arti�cial Intelligence Journal,
118(1-2):115{161, April 2000.

5. Jos�e Luis Ambite, Craig A. Knoblock, Ion Muslea, and Andrew Philpot. Compiling

source descriptions for eÆcient and exible information integration. To appear in Jour-

nal of Intelligent Information Systems, 2000.

6. Yigal Arens, Craig A. Knoblock, and Wei-Min Shen. Query reformulation for dynamic

information integration. Journal of Intelligent Information Systems, Special Issue
on Intelligent Information Integration, 6(2/3):99{130, 1996.

7. Naveen Ashish, Craig A. Knoblock, and Cyrus Shahabi. Intelligent caching for informa-

tion mediators: A kr based approach. InKnowledge Representation meets Databases
(KRDB), Seattle, WA, 1998.

8. Naveen Ashish, Craig A. Knoblock, and Cyrus Shahabi. Selectively materializing data

in mediators by analyzing user queries. In Fourth International Conference on Co-
operative Information Systems (CoopIS), Edinburgh, Scotland, September 1999.

International Journal of Cooperative Information Systems 25

9. Greg Barish, Craig A. Knoblock, Yi-Shin Chen, Steven Minton, Andrew Philpot, and

Cyrus Shahabi. The TheaterLoc virtual application. In Proceedings of Twelfth
Annual Conference on Innovative Applications of Arti�cial Intelligence (IAAI-
2000), Austin, Texas, 2000.

10. Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. In

Proceedings of the 14th International Joint Conference on Arti�cial Intelligence
(IJCAI 95), pages 1636{1642, August 1995.

11. M. Cali� and R. Mooney. Relational learning of pattern-match rules for information

extraction. In Proceedings of the Sixteenth National Conference on Arti�cial In-
telligence (AAAI-99), pages 328{334, 1999.

12. William W. Cohen. Knowledge integration for structured information sources contain-

ing text (extended abstract). In SIGIR-97 Workshop on Networked Information
Retrieval, 1997.

13. D. Freitag. Information extraction from HTML: Application of a general learning

approach. In Proceedings of the 15th Conference on Arti�cial Intelligence (AAAI-
98), pages 517{523, 1998.

14. Marc Friedman, Alon Levy, and Todd Millstein. Navigational plans for data integration.

In Proceedings of the Sixteenth National Conference on Arti�cial Intelligence
(AAAI-99), pages 67{73, Orlando, Florida, USA, August 1999. AAAI Press / The

MIT Press.

15. Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Infomaster: An

information integration system. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Tucson, AZ, 1997.

16. C. Hsu and M. Dung. Generating �nite-state transducers for semi-structured data

extraction from the web. Journal of Information Systems, 23(8):521{538, 1998.
17. R.J. Bayardo Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,

T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikr-

ishnan, A. Unruh, and D. Woelk. Infosleuth: Agent-based semantic integration of in-

formation in open and dynamic environments. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Tucson, AZ, 1997.

18. Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic,

and stochastic search. In Proceedings of the Thirteenth National Conference on
Arti�cial Intelligence (AAAI-96), pages 1202{1207, Portland, Oregon, USA, August
1996. AAAI Press / The MIT Press.

19. Craig A. Knoblock. Planning, executing, sensing, and replanning for information gath-

ering. In Proceedings of the Fourteenth International Joint Conference on Arti�-
cial Intelligence, Montreal, Canada, 1995.

20. Craig A. Knoblock, Steven Minton, Jos�e Luis Ambite, Naveen Ashish, Pragnesh Jay

Modi, Ion Muslea, Andrew G. Philpot, and Sheila Tejada. Modeling web sources for

information integration. In Proceedings of the Fifteenth National Conference on
Arti�cial Intelligence, Madison, WI, 1998.

21. Nicholas Kushmerick. Wrapper Induction for Information Extraction. PhD thesis,

Department of Computer Science and Engineering, University of Washington, 1997.

22. Chung T. Kwok and Daniel S. Weld. Planning to gather information. In Proceedings
of the Thirteenth National Conference on Arti�cial Intelligence, Portland, OR,
1996.

23. Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Query-answering algorithms

for information agents. In Proceedings of the Thirteenth National Conference on
Arti�cial Intelligence, Portland, OR, 1996.

24. Robert MacGregor. A deductive pattern matcher. In Proceedings of the Seventh

26 The ariadne Approach to Web-based Information Integration

National Conference on Arti�cial Intelligence, Saint Paul, Minnesota, 1988.

25. G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni. From databases to web-

bases: The araneus experience. Technical Report 34-1998, Dipartimento di Informatica

e Automazione, Universita' di Roma Tre, May 1998.

26. Ion Muslea, Steven Minton, and Craig Knoblock. Hierarchical wrapper induction for

semistructured information sources. Journal of Autonomous Agents and Multi-
Agent Systems, Forthcoming.

27. S. Soderland. Learning information extraction rules for semi-structured and free text.

Machine Learning, 34(1/2/3):233{272, 1999.
28. Je�rey D. Ullman. Information integration using logical views. In Proceedings of the

Sixth International Conference on Database Theory, Delphi, Greece, January 1997.
29. Zachary G. Ives Daniela Florescu Marc Friedman Alon Levy Daniel S. Weld. An

adaptive query execution system for data integration. In Proceedings of 1999 ACM
SIGMOD, Philadelphia, PA, 1999.

30. Gio Wiederhold. Intelligent Integration of Information. Kluwer, 1996.

